
ACHIEVING THE FULL

POTENTIAL OF TEST

AUTOMATION

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 2 http://www.logigear.com

TABLE OF CONTENTS

01 Abstract

02 The Benefits of Software Test Automation

03
Pitfalls: Why Test Automation Projects Fail

to Achieve Their Potential

04 Generations: Test Automation Evolution

05 Action-Based Testing: A Proven Approach

06 Conclusion

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 3 http://www.logigear.com

ABSTRACT

Software test automation has the capacity to decrease the overall cost of testing and
improve software quality, but most testing organizations have not been able to achieve
the full potential of test automation. A number of groups have implemented test
automation plans, only to later become disregarded as expensive “shelfware.” Often
such teams continue their automation efforts, yet become burdened with huge costs in
maintain large suites of automated test scripts that are of questionable value.

This paper will first discuss the key benefits of software test automation, and then
examine the most common techniques used to implement software test automation. It
will then analyze prevalent reasons why test automation efforts fail to meet their
potential.

Finally, this paper concludes with an examination in how using a keyword-driven
approach to test automation allows organizations to avoid problems inherent in other
approaches and benefit from test automation. Action Based Testing™, the latest
methodology from the original architect of the keyword method, and the
TestArchitect™ toolset will be presented as proven real-world examples of why test
automation is the optimal solution.

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 4 http://www.logigear.com

THE BENEFITS OF SOFTWARE

TEST AUTOMATION

Most software development and testing organizations
are well aware of the benefits of test automation. A
quick glance at the website of any test automation tool
vendor will point out a number of the key benefits of
test automation.

Some of these benefits include:

Reduced test execution time and cost:

Automated tests take less time to execute than manual
tests and can generally execute unattended. A tester
must simply start the test and then analyze the results
when the test is completed.

Increased test coverage on each testing
cycle:

Automated tests can allow testing teams to execute
large volumes of tests against each build of their
application, achieving a level of coverage that would
not be possible with manual testing.

This increased coverage can help teams uncover bugs
more quickly than manual testing. Test automation can
allow teams to test more features in each cycle
(breadth), and also to test features using more
permutations of inputs (depth).

Increased value of manual testing
effort:

So long as applications are meant for human end users,
test automation will never entirely replace the need for
human testers. Human testers will instantly notice
subtle bugs that are almost never detected by test
automation, particularly usability bugs. Automated test
tools are not instinctual— and test teams typically
discover bugs using exploratory and ad-hoc testing
techniques. By freeing manual testers from having to
execute repetitive, mundane tests, test automation
grants them to use their creativity, knowledge and
instincts to discover important bugs.

PITFALLS: WHY TEST

AUTOMATION PROJECTS

FAIL TO ACHIEVE THEIR

POTENTIAL

Despite the clear benefits of test automation, many
organizations are unable to build effective test
automation programs.

Test automation as seen as a costly effort finding few
bugs and questionable worth. There are a number of
reasons why test automation efforts are unproductive:

Poor quality of tests being automated:

Mark Fewster explains this problem very well:

It doesn’t matter how clever you are at test automating
a test or how well you do it, if the test itself achieves
nothing faster.” [Fewster, Software Test Automation,
1.1, (Addision Wesley, 1999)}

Many organizations simply focus on taking existing test
cases and converting them into automated tests.

There is a sense that if 100% of the manual test cases
can be automated, then the test automation effort will
be a success. In trying to achieve this goal, many
organizations may have automated many of their
manual tests, but found it to be a huge loss in time and
money discovering a few bugs.

The plain fact is that a poor test is a poor test, whether
it is executed manually or automatically.

Lack of good test automation
framework and process:

Many teams acquire a test automation tool and begin
automating as many test cases as possible, with little
consideration of how they can structure their
automation in such a way that is both scalable and
maintainable.

Little consideration is given to managing the test
scripts and test results or creating reusable functions or
separating data from tests, and other key issues which
allow a test automation effort to progress successfully.

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 5 http://www.logigear.com

After some time, the team realizes that they have large
quantities of test scripts and countless separate test
result files combined with the additional work of
maintain the existing scripts while continuing to
automate new scripts.

Ultimately, the organization required a larger test
automation team with higher costs resulting in no
additional benefit.

Inability to adapt to changes in the
system under test:

As the team proceeds towards their goal of automating
as many existing test cases as possible, they often don’t
consider what will happen to the automated tests when
the application under test (AUT) under goes a
significant change.

In lacking a well conceived test automation framework
that considers how to handle changes to the system
under test, teams often find the majority of their test
scripts will usually result in skyrocketing numbers of
false negatives, since the scripts are no longer finding
the behavior they are programmed to expect. With
teams hurrying to update the test scripts to account for
the changes, project stakeholders lose faith in the
results of the test automation efforts.

Minimal value in test automation causes a decision to
scrap the existing test automation effort and start from
scratch, using a more intelligent approach that will
produce incrementally better results.

GENERATIONS: TEST

AUTOMATION EVOLUTION

Software test automation has evolved
through several generations of tools
and techniques:

Capture/playback tools record the actions of a tester in
a manual test and allow tests to be run unattended
from many hours each day, greatly increasing test
productivity and eliminating mindless repetition of
manual testing. However, even small changes to the
software under test require that the test be recorded
manually again. Therefore this first generation of tools
is not efficient of scalable. Using this method,
nontechnical testers and business analysts can develop

executable test automation using “keywords” that
represent actions recognizable to end-users, such as
“login” while automation engineers devote their energy
to coding the low-level steps that make up those
actions such as “click’,” “find text box A in window B”,
“enter UserName” etc.

Scripting, a form of programming in computer
languages specifically developed for software test
automation, alleviates many issues with capture/
playback tools. However, the developers of the scripts
must be highly technical and specialized programmers
who work in isolation from the testers actually
performing the tests. In addition, scripts are best suited
for GUI testing and don’t lend themselves for
embedded, batch, or other forms of systems. Finally, as
changes to the software under test require complex
changes to the associated automation scripts,
maintenance of the ever-larger libraries of automation
scripts becomes an overwhelming challenge. Data-
driven testing is often considered individually as an
important development in test automation.

This approach simply but powerfully separated the
automation scripts from the data for input and returned
from the software under test.

This allows the data to be prepared by testers without
relying on automation engineers, and vastly increases
the possible variations and amount of data that can be
used in software testing. This break-down of the
problem into two pieces is very powerful. While this
approach greatly extends the usefulness of scripted
test automation, the huge maintenance chores
required of the automation programming staff remain.

Keyword-based test automation compartmentalizes
work even further in an advanced structures and
elegant approach. This reduces the cost and time of
test design, automation, and execution by allowing all
members of a testing team to focus on what they do
best.

Keyword-based test design can actually begin based on
documents developed by business analysts or the
marketing department before the final details of the
AUT are know. As the test automation proceeds,
bottlenecks are removed and the expensive time of
highly trained professionals is used effectively.

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 6 http://www.logigear.com

The keyword method cost benefits become even more
apparent as the testing continues. When the software
under test undergoes changes, revisions to the test and
to the automation scripts are necessary.

Organizing test design and test automation with the
keyword framework, eliminates time previously
allocated to maintaining large libraries of scripts and
rewriting entire scripts anew after major changes to the
software under test.

With the keyword method, the necessary changes are
far fewer. Many changes do not require new
automation and can be completed by non-technical
testers or business analysts. When required, changes to
automated keywords can be completed by automation
engineers without affecting the rest of the test. Hans
Buwalda, Chief Architect at LogiGear Corporation,
developed the keyword automation concept and first
presented this subject to the software testing
community in 1994. Mr. Buwalda began implementing
his ideas in Europe throughout the rest of the 1990s
with the TestFrame™ method and tool, and ultimately
continuing its development as Action Based Testing™
in the USA.

This method is the foundation of LogiGear’s test
automation framework, TestArchitect™, which not only
organizes scripting around keywords, but also offers
built-in actions that make it possible to automate many
tests without scripting of any kind.

ACTION BASED TESTING: A

PROVEN APPROACH

Action Based Testing (ABT) provides a powerful
framework for organizing test design, automation and
execution around keywords. In ABT keywords are
called "actions "to make the concept absolutely clear.
Actions are the tasks to be executed in a test. Rather
than automating an entire test as one long script, an
automation engineer can focus on automating actions
as individual building-blocks that can be combined in
any order to design a test.

Non-technical test engineers and business analysts can
then define their tests as a series of these automated

keywords, and execute their tests automatically
without creating any additional code.

Traditional test design begins with a written narrative
that must be interpreted by each tester or automation
engineer working on the test.

ABT test design takes place in a spreadsheet, with
actions listed consecutively in a clear well-organized
sequence. Actions, test data and any necessary GUI
interface information are stored in their own
spreadsheets from which they can be called by the
main test module.

Test are then executed from within the spreadsheets,
using Test Architect's built-in automation or a
customer-build test harness.

To achieve the try power of Action Based Testing, it is
important to use high-level actions whenever possible
in test design. High level actions are understandable by
those familiar with the business logic of the test. For
example, when the user inputs a number the system
makes a mortgage calculation or connects to a
telephone.

A good high-level action may not be specific to the
system under test. "Enter order" is a good high-level
step that can be used generically to refer to specific low
-level steps that take place in many tests or many
different applications. Automation is then completed
through the coding of low level actions. TestArchitect
usually provides all the low-level actions necessary
through its built-in automation feature, so there is
typically no need to write any additional code.

Creating the high-level action required by the test
design involves dragging-and-dropping a few low-level
actions to create that high-level action. The low-level
actions behind "enter order" would be the specific
steps needed to complete that action via various
interfaces such as HTML, the Windows command line,
etc. An example of low-level action would be "push-
button."

Whenever coding by an automation engineer is
required, breaking this work down into reusable low-

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 7 http://www.logigear.com

level actions saves time and money by making future
code changes necessary even when the software under
test undergoes major revisions.

A reshuffling of actions is usually all that is required. If
more coding is necessary, it involves only rewriting
individual actions rather than revision of entire test
scripts and the resulting accumulation of a vast library
of old automation is significantly reduced. Action Based
Testing allows testing teams to create a much more
effective test automation framework, overcoming the
limitations of other methods.

Full involvement of the Testing Team in
the Test Automation:

Most testing teams consist primarily of people who
have strong knowledge of the application under test or
the business domain, but do not have a background in
programming. The team members who are fulfilling the
roles of the test automation engineer are often people
with a software development or computer science
background, but without a strong understanding of
testing fundamentals, the software under test, or the
business domain.

Action Based Testing allows both types of team
members to contribute to the test automation effort by
allowing each person to leverage their unique skills to
create effective automated tests. Testers define tests as
a series of reusable high-level actions. It is them the
task of the automation engineer to determine how to
automate the necessary low-level actions and combine
them to produce the required high-level actions, both
of which can often be used in future tests. This
approach allows testers to focus on creating good tests,
while the automation engineers focus the technical
challenge of implementing actions.

Significant Reduction of Test
Automation Maintenance:

Many organizations build a significant test automation
suite with traditional methods and begin to see benefits
but encounter more maintenance efforts when the
application changes. Action Based Testing significantly
reduces maintenance by allowing users to define their
test at the business process level. Rather than defining
tests as a series of interactions with the UI, test
designers can define tests as a series of business
actions. For example, a test of a banking application
might contain the actions "open new account,"

"deposit," and "withdraw."

Even with the underlying UI changes, these business
processes will still remain the same, so the test designer
does not need to update the test. It will be the job of the
automation engineer to update the actions affected by
the UI changes, and this update will only need to be
made once, rather than in multiple test scripts.

Improved Quality of Automated Tests:

In Action Based Testing, test designers follow a top-
down approach which ensures that there is a clearly
stated purpose for every test. The first step is to
determine how the overall test automation effort will be
broken down into individual test modules.

Such Test Groupings include:

 Different function areas of the same application.

 Varying test types (positive, negative, requirements
-based, end-to-end, scenario-based, etc.).

 Diversified quality attributes under test (business
process, UI consistency, performance, etc.

Once the test modules have been identified, the next
step is to define explicit test requirements for each
module. Test requirements are critical because they
force test developers to consider what is being tested in
each module, and to explicitly document it. Once the
rest requirements are defined, they serve as both a
roadmap for developing the test cases in the module,
and the documentation for the purpose of the tests.
Test cases are associated explicitly to test requirements.

By explicitly stating the test requirements, it is possible
to easily determine the purpose of a test, and to
determine if a test does not sufficiently meet those test
requirements. This process ensures that the tests being
automated have a clear purpose that can be used to
determine in the future if the test needs maintenance or
even retirement.

Test developers can be precise and concise in their test
creation, creating enough tests to meet their stated
requirements without introducing redundancy.

Many test automation teams spend more time
maintaining their existing tests than actually creating
new tests. This high maintenance burden is due to the

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 8 http://www.logigear.com

fact that automated tests are highly dependent on the
UI of the UI of the application under test; when the UI
changes, so must the test automation. It is usually the
case that the core business processes handled by an
application will not change, but rather the UI used to
enact those business processes changes.

After explicitly defining the test requirements, the test
developers implement the test scenario using either
predefined actions or by defining new actions. Test
developers can define their tests as high-level business
processes allowing the tests to be more readable than
those defined using low-level interface interactions.

Facilitates Test Automation Strategy

Many testing teams dive into test automation without
considering how they should approach test automation.
A very typical approach is to acquire a test automation
tool, and then try to start automating as many existing
test cases as possible. More often than not, this
approach is not effective. Action Based Testing
provides a framework that integrates the entire testing
organization in supporting effective test automation.
Business analysts, test engineers, automation
engineers, test leads and QA managers all work within
the framework to complete test planning, test design,
test automation and test execution. With the right
framework in place, the organization can respond most
effectively to everything from marketing requirements
to software development changes.

Enable Effective Collaboration by
Distributed Teams

With testing teams often distributed to low-cost areas
across the country and around the world, the challenge
of sharing information, sharing test
libraries and sharing automation libraries is multiplied
many times over.

Action Based Testing provides a strategic framework
for organizing tests with a very clear structure enabling
a strong measure of control over the disruption caused
by distance and time zone differences. TestArchitect™.
as a test automation framework supporting the Action
Based Testing methodology, takes this to the next level
by remotely sharing database repositories of test
modules, actions and other test assets, and provides
clear control and reporting to managers of access,
changes and results.

CONCLUSION

As with other areas of software development, the true

potential of software test automation is realized only

within a framework that provides a truly scalable

structure.

Since its introduction in 1994, the keyword based

method of test automation has become the dominant

approach in Europe and is now taking the United States

by store precisely because it provides the best way to

achieve this goal.

Action Based Testing offers the latest innovations in

keyword-driven testing from the original architect of

the keyword concept. Test design, test automation and

test execution are all performed within a spreadsheet

environment, guided by a method focused on an

elegant structure of reusable high-level actions.

TestArchitect, a test automation framework from

LogiGear with features ranging from action

organization to globally distributed team management,

offers the full power of Action Based Testing to the

entire testing organization including business analysts,

test engineers, automation engineer, test leads and

managers.

http://www.logigear.com/magazine/

USA - Headquarters 1730 S. Amphlett Blvd. Suite 110, San Mateo, CA 94402 9 http://www.logigear.com

LogiGear is a leading provider of software testing services, test

automation and application development and maintenance. We help

organizations deliver better products while saving time and money. Since

1994, we have completed testing projects with hundreds of companies

from early stage start-ups to Fortune 100, across a wide range of

industries and technologies. For more information visit Logigear.com or

contact us at (650) 574-1400 or sales@logigear.com.

About LogiGear

LogiGear Corporation provides global solutions for software testing and offers
software testing training programs worldwide. LogiGear is a leader in the
integration of test automation, offshore resources and US based project
management for fast, cost effective results. Founded in 1994 by top thought-
leaders in software quality, LogiGear offers the best possible combination of low
cost, fast turnaround, and advanced testing expertise. LogiGear serves clients
around the world ranging from the Fortune 500 to early-stage startups in a wide
range of industries. Be it consulting, training, high-volume and cross-platform
test automation, outsourced testing, or automation technology, we partner
with organizations to create approaches that precisely meet their needs. For
more information on how we can help your business, contact us today.

 Manual

 Automated

 Database

 Exploratory

 White box

TYPES OF

TESTING

LOGIGEAR SOLUTIONS

http://www.logigear.com/magazine/

