
Help! I am Drowning in 2
Week Sprints

Please Tell me What NOT to Test!

2

MARY THORN
MTHORN@VACO.COM

During her more than 20 years of experience with financial, healthcare, and

SaaS-based products, Mary has held VP, Director, and Manager level positions

in various software development organizations.

A seasoned Leader and Coach in agile and testing methodologies, Mary has

direct experience building and leading teams through large scale agile

transformations. Mary’s expertise is a combination of agile scaling, agile testing,

and DevOps that her clients find incredibly valuable.

She is also Chief storyteller of the book The Three Pillars of Agile Testing and

Quality, and avid keynote and conference speaker on all things agile and agile

testing.

Private & Confidential

AGILE

Agenda

1. Introduction

2. 3 Amigos

3. Risked Based Testing

4. Test Ideas

5. Test Case Gaps

6. Pareto

7. All Pairs

8. Wrap Up!

3

3 Amigos

4

3-Amigos

• Coined by George Dinwiddie
• http://rgalen.com/agile-training-news/2014/4/13/3-amigos-in-agile-

teams

• Swarming around the User Story by:
• Developer(s)

• Tester(s)

• Product Owner

• Conversation device – reminder for collaboration
amongst relevant team members

5

http://rgalen.com/agile-training-news/2014/4/13/3-amigos-in-agile-teams

Risk–Based Testing Background

• It starts with the realization that you can’t test everything –
ever!

100% coverage being a long held myth in software development

• There are essentially 5 steps in most of the models
1. Decompose the application under test into areas of focus

2. Analyze the risk associated with individual areas – technical, quality,
business, schedule

3. Assign a risk level to each component

4. Plan test execution, based on your SDLC, to maximize risk coverage

5. Reassess risk at the end of each testing cycle

6

Risk–Based Testing Background

• Risk–Based Testing is effectively a risk mitigation technique
• Not a prevention technique

• It’s about trade-offs
• Human and physical resources

• Ratio’s between Producers (Developers) and Consumers (Testers)

• Time

• Rework (retesting & verification)

• Quality – Coverage vs. Delivery

• Visibility into the trade-offs

7

Test Ideas

• What are they?
• Risked based test planning technique

• Created by Rob Sabourin

• Replaces traditional waterfall test plan in Agile.

8

Test Ideas

9

Test Ideas - Sources

• Capabilities

• Failure Modes

• Quality Factors

• Usage Scenarios

• Creative Ideas

• States

• Data

• Environments

• White Box

• Taxonomies

10

Test Ideas

• How to find them?
• Does system do what it is suppose to do?

• Does the system do things it is not supposed to?

• How can the system break?

• How does the system react to it’s environment?

• What characteristics must the system have?

• Why have similar systems failed?

• How have previous projects failed?

11

Test Ideas - Process

• Life of a test idea
• Comes into existence

• Clarified

• Prioritized
• Test Now (before further testing)

• Test before shipping

• Nice to have

• May be of interest in some future release

• Not of interest in current form

• Will never be of interest

• Integrate into a testing objective

12

Test Ideas – 3 Amigos

• Test Triage Meeting
• Review Context

• Business – with PO

• Technical – With Developer

• Add or remove tests

• Agree to where the cut line is

13

Test Case Gap Analysis

14

Test Case Gap Analysis

Pareto Principle

16

Pareto Principle

Italian economist Vilfredo Pareto observed that -

For many phenomena, 80% of the consequences stem from 20% of
the causes

When analyzing personal wealth distribution in Italy.

• Also known as the 80-20 rule, the law of the vital few, and the principle of
factor sparsity

• Joseph Duran brought the principle forward as a potential quality
management technique

• In probability theory referenced as a Pareto distribution

17

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principle “Thinking” Examples

• In a Toyota Prius warehouse –
• 20% of the component boxes take up 80% of the space

• 20% of the components make up 80% of the overall vehicle cost

• In software applications –
• 20% of the application code produces 80% of the defects

• 20% of the developers produce 80% of the defects

• 20% of the test cases (ideas) find 80% of the defects

• 20% of the test cases (ideas) take 80% of your time to design & test

• 20% of the product will be used by 80% of the customers

• 20% of the requirements will meet 80% of the need

18

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principle “Thinking” Examples

• Leads to the notion of defect clustering. Many have
observed that software bugs will cluster in specific modules,
classes, components, etc.

• Think in terms of stable or well made components versus
error-prone, unstable, and fragile components. Which ones
should receive most of your attention? Do the areas remain
constant?

• Often, complexity plays a large part in the clustering. Either
solution (true) complexity OR gold-plating (favored)
complexity.

19

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Open Defects per Functional Area
Trending – Pareto (80:20 Rule) Chart

20

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

D
ef

ec
ts

0

20

40

60

80

100

120

Bugs

Cum %

Open Defects per Functional Area
“Rolling” Pareto Chart

21

Open Defects per Functional Area

0

5

10

15

20

25

30

Jan 1-15 Jan 16-31 Feb 1-14 Feb 15-28 Mar 1-15 Mar 16-30

Project weeks

of

 D
ef

ec
ts

Install & Config Internal files Dbase Reporting

R-time analysis Off-line analysis GUI Help & docs

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principal Step 1 – Application
Partitioning

• The first major challenge to Pareto-Based risk analysis is
meaningfully partitioning your application. Here are some
guidelines –
• Along architectural boundaries – horizontally and/or vertically
• Along design boundaries
• At interface points – (API, SOA points, 3’rd party product integrations,

external data acquisition points)

• Always do this in conjunction with the development team

• The partitioned areas need to be balanced – in approximate
size & complexity

• Shoot for 5-12 meaningful areas for tracking

22

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principal Step 2 – Defect
Tracking Setup

• Modify your DTS to support specific application component areas

• During triage, effectively identify and assign defect repairs and
enhancements to component areas
• Early on, testers will need development help to clearly identify root component areas

(about 20% of the time)

• If you have historical defect data (w/o partitioning), you can run an
application analysis workshop to partition data (post release) for
future predictions

It does require discipline and a little extra effort…

23

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principal Application Analysis
Workshop

• Sometimes you don’t have the time to start Pareto tracking
before starting a project, so reflectively analyze Pareto for
future planning –

• Decompose your application or a sub-component of it if pressed for time

• Gather defects surfaced

• Gather your team (developers, testers)

• Discuss locale for each bug and create distribution

• Off-line create your curves and publish insights for the “next” release

• Can also help fine-tune decomposition areas and train the test team in defect
localization

24

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principal Step 3 – Observations
& Adjustments

• Project trending at a component level
• Look for migration of risk and make adjustments

• Look for stabilization or regressions (risk)

• Identify high risk & low risk component areas at a project level

• Map component rates to overall project goals

• Trend open & high priority defects at a component level

• Track or predict project “done”ness at a component level

• Weekly samples of 20% component focus areas – looking
for risk migration
• Sample weekly, then adjust focus across your testing cycles or iterations

25

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

Pareto Principal Tools

• Excel can be used to display Pareto like charts, with the
cumulative percent trend needing to be simulated

• There are other packages available that will properly
calculate & display Pareto Charts for you. Keeping in mind
that it’s a Six Sigma tool, many are associated with
supporting it.

26

Sample Pareto Chart

30

25

15

10 10

530

55

70
80

90
100

0

5

10

15

20

25

30

35

UI Mware Parsing SOAP Reports Help

De
fe

ct
s

0

20

40

60

80

100

120

Bugs

Cum %

All Pairs

27

All-Pairs Testing

• All-Pairs testing is a method of handling large
scale combinatorial testing problems
• Also referred to as Pairwise, Orthogonal Arrays,

and Combinatorial Method

• it identifies all pairs of variables that need to be
tested in tandem – to achieve reasonably high
coverage.

• Three primary references include –
• Lee Copeland – A Practitioners Guide to

Software Test Design

• James Bach – Open Source, AllPairs
implementation

• Bernie Berger – Efficient Testing with All-Pairs
2003 StarEast paper

28

All-Pairs Testing Interoperability Testing

• One sweet spot area for All-Pairs testing is interoperability. Something that
faces web application testers every day.

• In this example, we want to examine browser compatibility across this specific
set of system software levels – focusing on the browser

• Considering all combinations, there are (4 x 7 x 4 x 2) or 224 possible test
cases for the example.

Client OS Browser App Server Server OS

Win NT IE 7 WebSphere Win NT

Win Vista IE 8 WebLogic Linux

Linux Safari 2 Apache

MAC Chrome IIS

FireFox 3.0

FireFox 3.5

Opera 9

29

All-Pairs Testing Example

• In All-Pairs test design we are concerned with
• Variables of a system

• Possible values that variables could take

• Then we generate a list of test cases that represent the
pairing of variables (all pairs) as the most interesting set of
test cases to approach in your test design

30

Hexawise Testing Example
OS Server OS Brow ser Web servers

Window s xpWindow s XPIE7 Apache

Window s vistaLinux IE7 Websphere

Linux Window s XPIE7 IIS

MAC Linux IE7 Weblogic

Window s xpWindow s XPIE8 Websphere

Window s vistaLinux IE8 Apache

Linux Window s XPIE8 Weblogic

MAC Linux IE8 IIS

Window s xpLinux Firefox 3.0 IIS

Window s vistaWindow s XPFirefox 3.0 Weblogic

Linux Linux Firefox 3.0 Apache

MAC Window s XPFirefox 3.0 Websphere

Window s xpWindow s XPFirefox 3.5 Weblogic

Window s vistaLinux Firefox 3.5 IIS

Linux * Firefox 3.5 Websphere

MAC * Firefox 3.5 Apache

Window s xpWindow s XPSafari Apache

Window s vistaLinux Safari Websphere

Linux * Safari IIS

MAC * Safari Weblogic

Window s xpWindow s XPChrome Apache

Window s vistaLinux Chrome Websphere

Linux * Chrome IIS

MAC * Chrome Weblogic

Window s xpWindow s XPOpera Apache

Window s vistaLinux Opera Websphere

Linux * Opera IIS

MAC * Opera Weblogic

• Using pair-wise on the previous
example, we would identify 28 test
cases as an alternative to the 224
for absolute coverage.

• We’d then use this output as
guidance when designing our test
cases.

Note the ‘*’ indicates a don’t care for this
variable

31

All-Pairs Testing Intent

• Defects
• The hope of All-Pairs testing is that by running from 1-20% of your test cases

you’ll find 70% - 85% of your overall defects

• Coverage
• By way of example (Cohen) a set of 300 randomly selected test cases provided

67% statement coverage and 58% decision coverage for an application. While
200 All-Pairs derived test cases provided 92% statement and 85% decision
coverage.

• Important tests can be missed. Use sound judgment when
creating tests and add as required

32

All-Pairs Testing Intent

• All-Pairs is simply a tool in your test design arsenal. Don’t use it
alone or blindly!

• You won’t find all of your bugs exclusively using this tool!

• Often the strategy is to use All-Pairs to establish your baseline
set of test cases
• Then analyze other business critical combinations and add risk-based tests as

appropriate

33

All-Pairs Testing Brainstorming Value
Proposition

• What are some
testing area
opportunities for
All-Pairs?

• What are not?

• UI type input / output variation testing
(functional)

• Cross-platform (interoperability) testing

• Anything with high numbers of variables

• Scenario based testing, with path (variable)
variation

• Performance testing, and most other non-
functional testing

• Exploration

• Using it solely to derive your test cases

34

All-Pairs Testing Fails when…

A few cautions from James Bach & Patrick J. Schroeder in paper –

Pairwise Testing: A Best Practice That Isn’t

• You don’t select the right values to test with

• When you don’t have a good enough oracle

• When highly probable combinations get too little attention

• When you don’t know how the variables interact

35

All-Pairs Tools

• Let’s take a look at www.hexawise.com

• We’ll be “driving”, but we expect you to login in later and try things out…

• Review:
• Implementation of our earlier platform table

• Implementation of Bernie Berger’s example

36

http://www.hexawise.com

Wrapping up!

• There are a lot of old and new testing
techniques that can used to enhance your
agile testing journey.

• Here we discussed just a few…

• Read blogs, go to conferences, read our
book☺

37

