
Peter Kim

Software Design Patterns for Quality Engineers

Hello

● Peter

● Software Engineer

● Quality Assurance

● Quality Engineer / Automation Specialist

● Engineering Manager

● QE Manager

● 8 Startups

● 5 Fortune 100 Companies

Hello

● Peter

● Co-organizer for DC Agile Software Testing
Meetup (dcast.io)

● Network with QE/DEV leadership
○ Reality vs. “best practices”
○ Work closely with Consultants
○ Work closely with HR/Hiring

● Learning to improve my soft skills

● Tinkering with new technologies

● Crash/Reliability (Chaos) Testing

● AI/ML

● Advanced “Near Real Time” Test Reporting
Systems that Scale

● GPU Powered Databases

... observations
● Hard working employees that could’ve got more

done if they knew a little bit more ...

● Too much work on boiler plate code vs. writing
code for the task at hand.

● Scalability pains due to poor design

● Lack of trust from DEV team due to poor coding
practices

● Brittle automation …

● Poor Test Reports

● Too much time to analyze post-execution results

● Fear of changing

“un-Learn”
“Learn”

● Hard working employees that could’ve got more
done if they knew a little bit more ...

● Too much work on boiler plate code vs. writing
code for the task at hand.

● Scalability pains due to poor design

● Lack of trust from DEV team due to poor coding
practices

● Brittle automation …

● Poor Test Reports

● Too much time to analyze post-execution results

Change Yourself
● Fear of change → Passion to Improve

*Accept that “change” is a good thing.

.. if your so passionate about QA, then wouldn’t
you want to learn more ..

● Self Advocate (yourself and the team)

Testing is Fun
● https://www.musicradar.com/news/guitars/eddi

e-van-halen-talks-building-the-frankenstein-honin
g-the-5150-and-evh-gear-641564

https://www.musicradar.com/news/guitars/eddie-van-halen-talks-building-the-frankenstein-honing-the-5150-and-evh-gear-641564
https://www.musicradar.com/news/guitars/eddie-van-halen-talks-building-the-frankenstein-honing-the-5150-and-evh-gear-641564
https://www.musicradar.com/news/guitars/eddie-van-halen-talks-building-the-frankenstein-honing-the-5150-and-evh-gear-641564

“Future You” in the
next 3 hrs

● OOP
● Inheritance vs. Composition
● Understand the Significance of

SWDP
● How SWDP are used
● When to use SWDP
● Key SWDP for QE
● Applying SWDP into practice

Agenda

Intro

OOD

Inheritance vs. Composition
Key Principles

Singleton
Composite
Command
Template
Strategy

re:Intro

Reasons that you are here ..

● You want to improve your software design skills

● You have experienced disappointment and challenges in designing well thought out programs

● You’re already knowledgeable with object-oriented programming, but it’s just not enough ..

● You’re passionate to improve your skill set

● Your automated tests are brittle and often times require refactoring

● You’ve been tasked to write high quality test scripts

● You’ve been tasked to design and implement a test framework

● You want to understand how to recognize problems that can be solved with design patterns

Philosophy

“Absorb what is useful,
Discard what is useless,

And add what is
Specifically your own.”

Code: GIT

https://github.com/h20dragon/qe-design-patterns

Prep: Install Ruby

● Download with DevKit (Link)

● Ensure checkbox for PATH
update is enabled.

Prep: Install Rubymine (Optional)
Otherwise, any editor

FYI: Running Examples

ruby -I <lib path> <ruby program>

Examples:

ruby -I ./ ex.rb

ruby -I ./lib ex.rb

Basics for OO

● Program to an Interface (not the Implementation)

Basics for OO - Program to an Interface

● Program to an Interface (not the Implementation)

○ Scalability
○ Less brittleness
○ Loosely Coupled Systems

*Less dependencies on external systems

Basics for OO - Program to an Interface

● Programming to an Interface (not the Implementation)

○ Demo

/qe-design-patterns/Program-to-Interface/bash-example

Basics for OO - Program to an Interface (ex1)

● Programming to an Interface (not the Implementation)

/qe-design-patterns/Program-to-Interface/bash-example/ex1

○ We know: Multiple automated tests, however they
have different test reports

○ We need: a solution to provide uniform reports
regardless of prog. language, OS, framework, ...

Basics for OO - Program to an Interface (ex1)

● Programming to an Interface (not the Implementation)

/qe-design-patterns/Program-to-Interface/bash-example/ex2

○ genReport()
■ BASH - Leverage Exit Code
■ Python - Pytest outputs results into JUNIT
■ Any JUNIT (Surefire XML format) - qe-reporter.py

○ Ability to change test report in one place

./test-regression.sh

Basics for OO - Program to an Interface (ex2)

● Programming to an Interface (not the Implementation)

/qe-design-patterns/Program-to-Interface/bash-example/ex2

○ We know: Multiple automated tests, however they all
report to an API (genReport) .. passing args.

○ We have: Uniform test reports.
■ Test Output
■ Exit codes

Basics for OO - Program to an Interface (ex2)

● Programming to an Interface (not the Implementation)

/qe-design-patterns/Program-to-Interface/bash-example/ex3

○ Easy to make updates with minimal impact!

Object Oriented Programming (OOP)

● Abstraction

● Encapsulation

● Inheritance

● Polymorphism

Object Oriented Programming (OOP)
Abstraction (1)

● Conceptualizing a model of the problem

● Breaking down, with modularity, the problem, into simple
and clean manageable parts.

● Hide the unnecessary complexity of the details

Object Oriented Programming (OOP)
Abstraction (2)

● Java programmers may get confused between “Abstract
class” with OOP Abstraction
○ In Java, “Abstract class” is a class that can’t be

instantiated.

○ Regarding OOP, it’s a mindset in understanding and
breaking down the problem - how things should work
and be put together

Object Oriented Programming (OOP)
Abstraction - /oop/abstraction/ex1

Object Oriented Programming (OOP)
Abstraction - /oop/abstraction/ex2

Abstraction

Ahh .. programming to
an interface

Object Oriented Programming (OOP)
Abstraction - /oop/abstraction/ex2

DEMO

Object Oriented Programming (OOP)
Encapsulation

● Hiding awareness and preventing access to a object’s
assets that the user doesn’t need to know about ..

… this helps to prevent unwanted side-effects where
data is accidently updated.

Object Oriented Programming (OOP)
Encapsulation - /oop/encapsulation

DEMO

Object Oriented Programming::Inheritance

● Inheriting methods and properties (attributes) from another class(es)

Object Oriented Programming::Inheritance
What most programmers think ..

● Equating inheritance as OOP.

● Typically “inheritance” is the big take-a-way per OOP

● “Inheritance” is like getting stuff for free, where you gain the advantages of
accessing methods and behaviors for your purposes

Object Oriented Programming::Inheritance

● Heavily leveraging inheritance is typically associated as OOP.

● Typically “inheritance” is the big take-away per OOP

● “Inheritance” is like getting stuff for free, where you gain the advantages of accessing methods and
behaviors for your purposes

● If it’s too good to be true, then … beware.

● Free things comes with hidden costs.

○ Comes with strings attached
○ Unintentional marriage between the superclass and the

subclass

Object Oriented Programming::Inheritance

● Unintentional marriage between superclass and subclass

○ Once a class is subclassed, you now have two classes that are “bound” or “tightly coupled”.

A bad marriage where you simply can’t escape your new family and their entire ancestry.

■ Any ill behavior from the superclass, whether existing or new, is passed to the new subclass
■ Any secrets that are not properly hidden in the superclass, are now available for abuse by

the new subclass.
■ A single change, made to the superclass, can be detrimental, or fatal, to the innocent

subclass
■ If the superclass has multitudes of subclasses, you could be setting yourself up for a big

catastrophe .. refactoring.

Object Oriented Programming::Inheritance

We should probably rely less on inheritance.

Object Oriented Programming::Inheritance
Demo - /oop/inheritance/

DEMO

qe-design-patterns/oop/inheritance

Object Oriented Programming::Inheritance
Demo - /oop/inheritance/

DEMO

qe-design-patterns/oop/inheritance

qe-design-patterns/oop/inheritance/ex2
*(inheritance / polymorphism)

Object Oriented Programming::Polymorphism

● Creating objects that can take on forms of multiple objects (static and at runtime).

Object Oriented Programming::Polymorphism
Java example

// homepage.java
class HomePage extends BasePage {

 // Home page code
 public void loadPage() { .. }
}

// homepage.java
class BasePage {

 public WebDriver driver;

 public void click() {
 ….
 }

}

// searchpage.java
class SearchPage extends BasePage {

 // Search page code
 public void loadPage() { … }

 public void search(text) { … }
}

Object Oriented Programming::Polymorphism
Java example

...
pg = new BasePage();
homePg = new HomePage();
searchPg = new SearchPage();

// variable ‘pg’ can be used to for any subclass of BasePage.

pg = homePg
pg.loadPage();

Pg = searchPg;
pg.search(“Elvis”);

Object Oriented Programming::Polymorphism
Example

DEMO

qe-design-patterns/oop/polymorphism

Composition: “is a ..” vs. “has a ..”

● Design classes that are assembled based on “here’s what I need”.

● Building classes from the “bottom-up”

● Minimize overhead and side-effects (e.g. avoid dependencies on a superclass)

● Scalable design
○ Easier to add/remove behaviors without affecting other classes

Tightly Coupled Systems

VEHICLE

● Doors
● GasEngine
● Seats
● Wheels
● StartCar

CAR

Tightly Coupled Systems

VEHICLE

● Doors
● GasEngine
● Seats
● Wheels
● Start()

Car Motorcycle

Scooter

“Initially, things worked out
great when we only needed to
support “Car”, but over time ..
we realize that we had a one
trick pony - design flaws
prevented scalability.”

Electric Car

Loosely Coupled Systems - Simplicity with Scalability
(Abstraction / Composition)

ENGINE (INTERFACE)

● Start
● Stop
● Refuel

ELECTRIC
● PressBrake(stop)
● ...

FEET
● FeetDown(stop)
● Run (start)

Flintstone

● EngineType::FEET

GAS
● PressBrake(stop)
● ..

Porsche 911

● EngineType::GAS

TESLA X

● EngineType::ELECTRIC

HORSE
● PullReigns(stop)
● ...

Carriage

● EngineType::HORSE

Loosely Coupled Systems - Simplicity with Scalability
(Abstraction / Composition)

DEMO

/qe-design-patterns/principles/composition/ex1.rb

qe-design-patterns/Composite/composition_ex.rb

Good Programming is Gangsta

● GoF (Gang of Four) - 1994

○ 23 “Classic” Design Patterns

○ Goal is to build clean, well-designed object-oriented programs.

● Design Patterns are used everywhere

○ Real-time firmware (microcode)
○ Large scale real-time systems
○ Enterprise software
○ Video games

Programming Principles

● Separate out the things that change from those that stay the same.

Things unfortunately change .. so does our user stories, requirements, and unexpected defects. These
are better mitigated with a design that isolates things that don’t change from things that change.

Objective is to minimize any negative impacts where those areas that do change have little harm to
those that don’t change.

Programming Principles

● Separate out the things that change from those that stay the same.
● YAGNI

Programming Principles

● Separate out the things that change from those that stay the same.
● YAGNI

You Ain’t Gonna Need It.

Why add code when it’s most likely that it won’t be used?

Why implement features that have an inflexible design?

Leverage a design that focuses on what’s needed now, while building “in” the flexibility that you’ll need in
the future.

Programming Principles

● Separate out the things that change from those that stay the same.
● YAGNI
● Program to an Interface, not an Implementation

Programming Principles

● Separate out the things that change from those that stay the same.
● YAGNI

● “Program to an Interface, not an Implementation”

Loosely coupled systems.

The “interface” tells others what they can “do”.

Programming Principles

● Separate out the things that change from those that stay the same.

● YAGNI

● “Program to an Interface, not an Implementation”

● Composition over Inheritance

Programming Principles

● Separate out the things that change from those that stay the same.

● YAGNI

● “Program to an Interface, not an Implementation”

● Composition over inheritance

● Delegation

Pass the along the responsibility to the one who’s really accountable (responsible)

Programming Principles

● Separate out the things that change from those that stay the same.

● YAGNI

● “Program to an Interface, not an Implementation”

● Composition over inheritance

● Delegation

● Memoization

Remember previous results for performant processing.

Memoisation

● Improved performance

● Example with fibonacc

./principles/memoisation/

Memoisation::/principles/memoisation/fib1.rb

Memoisation::/principles/memoisation/fib2.rb

Memoisation::/principles/memoisation/fib2.rb

DEMO

What are Design Patterns?

● Proven solutions to common design problems

● GoF - thanks!

Why do you need to know them?

● Leverage a proven solution

How are they used?

Singleton - There can only be one.

Problem:

You need access to data/methods “everywhere” in your codebase - almost like a global variable.
This means side effects due to global scoping and challenges to passing around a global object.

Solution:

Simple and clean design to manage global access to only one object.

Singleton - There can only be one.

Example: You need to manage multiple browsers.

Solution:

Design a single “browser manager” that manages any creation of browsers and accessing them.

Singleton - There can only be one.

DEMO

/qe-design-patterns/Singleton

Composite

Problem:

Managing tasks and/or objects that are built on other tasks and/or objects.

Solution:

GoF - “... the sum acts like one of the parts”.

Composite

Example:

Managing components (pageObjects) to ensure scalability.

Solution:

Pages are composed of other pages and/or components.

Composite

DEMO

Template

Problem:

You have a series of steps, however you need to vary one of those steps.

Template

DEMO

/qe-design-patterns/Template/

Strategy

Problem: The algorithm needs to change during runtime.

Solution: Separate out those algorithms into their own class.

Strategy

DEMO

/qe-design-patterns/Strategy/ruby -I ./ strategy_drv.rb

Command

Problem: The complexity involved with managing “actions” is getting out of control.

Solution: Manage “actions” as objects, where they can be created, customized, and executed with a simple
interface.

Command

DEMO

/qe-design-patterns/command/ex1
/qe-design-patterns/command/ex2

Peter Kim
LinkedIn: peterkim777
Twitter: peter_kim777
Email: h20dragon@outlook.com

dcast.io

mailto:h20dragon@outlook.com

