
The Complete Guide to End-to-End Testing | 1

The Complete Guide to End-to-End Testing

https://smartbear.com?utm_medium=resource&utm_source=ebook&utm_campaign=end-to-end-testing

The Complete Guide to End-to-End Testing | 2

 What is End-to-End Testing?

 Benefits of End-to-End Testing

 Types of End-to-End Testing

 How to Perform End-to-End Testing

 How to Be Successful: Your Top-Down Strategy

 Top 3 Most Common Mistakes in End-to-End Testing

 Conclusion

3 |

4 |

6 |

7 |

9 |

12 |

13 |

Content

The Complete Guide to End-to-End Testing | 3

What is
End-to-End Testing?

End-to-End testing is a methodology used in the

software development lifecycle (SDLC) to test the

functionality and performance of an application

under test. It is a process implemented by qual-

ity assurance (QA) teams today to not only test

the product that’s being developed or the pieces

that it’s artificially been bro- ken down into, but to

gauge how the product works from the end user

perspective by asking the question, “How are the

consumers interacting with the product and is it a

seamless experience?”

Software today is complex, and applications are

rarely standalone products. They are often built

on a network of integrated sub- systems including

databases, interfaces, and other applications.

When one fails, so does the overarching product.

As a result, you need to not only test your software

- how it looks and how it behaves - but also how

those sub components behave.

End-to-end testing is designed to provide full test

coverage for each of these pieces, for both the API

and UI layers, and each of the connected networks

and third-party apps. Executing end-to- end tests

will not only optimize your testing cycles but will

ensure you’re confident in your next release.

While similar to integration or system testing, the

ultimate goal of running end-to-end tests has a

different focus – user experience.

The Goal of End-to-End Testing

The end game is all about the user. As a tester, it

can be hard to remember that there is another hu-

man being on the other end of the product. Taking

a step back from looking at only the performance

and functionality of various test criteria, and moving

away from the metrics-only lens is hard, but a vital

step to ensuring success.

Remember the user’s journey and gauge the

success of your product workflow from a different

angle. You’ll need to walk through the steps your

potential customers might take to better under-

stand how they will interact with the software.

Having this mindset is critical for building a success-

ful end- to-end testing strategy and will ensure that

you validate your system from start to finish.

The Complete Guide to End-to-End Testing | 4

Benefits of
End-to-End Testing

1.
Confirmation of Application
Health

You need to test the features of your application

to validate their behavior. While we just stated that

end-to-end testing focuses on the user experience,

you still need to confirm that everything works, not

just together, but also separately.

Some teams may refer to this as systems or inte-

gration testing. One pitfall teams tend to fall into is

that they will execute these tests for only the back-

end or the front-end. It’s essential that you avoid

this and test all the systems - from the back-end to

the front-end.

2.
Expanded Test Coverage

Another benefit of end-to-end testing is expanded

test coverage. When you’re testing every single unit,

function, or feature of your application, you may not

always be considering how the user

is interacting with your product. You will need to

ask yourself, “What are all of the different environ

ments your end user may use to interact with your

application?”

As software scales globally and as the number of

available devices continues to rise, it can be hard to

predict what browser or operating system your users

will be using to access your product. While challeng-

ing to foresee, if you can conduct end -to-end testing

and plan your test strategy with the consumer in

mind, you’ll be able to expand your test coverage by

including environments previously not considered.

3.

Discovered New Bugs

If you’re not testing the same way your users

are experiencing your product, you won’t detect

every bug. However, they might. Despite your best

efforts, consumers always seem to create new and

never-before-heard-of ways to interact with soft-

ware. Bugs in these scenarios can be extremely

challenging to find as they can slip by your func-

tional and performance tests undetected.

It’s essential to your success and the happiness of

your end-users that you detect bugs before they

reach production. The most effective way of doing

The Complete Guide to End-to-End Testing | 5

this, is through end-to-end testing. The process will

ensure you test your application, end-to-end, the

way it would be used in the real world.

4.
Reduced Testing Resources

A key question that always pops up is ‘if you’re

adding end-to-end tests to your already existing

strategy, wouldn’t you be adding more resources?’

The answer is no. While it may seem counterintu-

itive, you have to remember that resources aren’t

limited to just people and budget. Time is a valuable

resource, and one of the few you will never be able

to get back. By implementing a robust end-to-end

strategy, you’ll actually cut down on key time-con-

suming tasks.

Maintenance

By catching bugs before your end users do, you’ll

cut down on the amount of time spent fixing those

bugs. It’s much easier to fix issues before they’re

released.

 Defect fix time

There is a huge benefit to finding bugs prior to pro-

duction aside from avoiding maintenance has

sles and unhappy customers. End-to-end testing

provides detailed information on how individual

pieces of an application work together in a specific

context. When these tests fail, the bugs can be

easier to find, making it much easier for developers

to fix them. While this is not particularly a testing

resource, having a development team that can fix

bugs quickly makes it less likely that one bug could

effect another. There are many moving pieces and

the faster you fix one bug, the less likely it will be to

cause further defects down the road.

The Complete Guide to End-to-End Testing | 6

There are two types of end-to-end testing – vertical

and horizontal. While horizontal end-to-end testing is

most commonly associated with this testing method,

it’s crucial to realize that both play a part in building a

successful end-to-end strategy.

The process of horizontal end-to-end testing is

used to verify that every workflow or transaction in

an application occurs correctly. Historically, this may

have occurred in a single application or interface,

but software systems today interact with a myriad of

external interfaces, both those developed internally

and those owned by third parties. With horizontal end-

to-end testing, it’s essential your test environments are

set up in advance to ensure a smooth testing process.

Vertical end-to-end testing entails thoroughly

testing each sub system, independent from one

another, starting the bottom layer and working

your way up through each series of connected

pieces – from back to front-end. Let’s walk through

a real-world example to put the two into perspective.

Types of
End-to-End Testing

The Complete Guide to End-to-End Testing | 7

We’ll use a familiar example, ecommerce. As the

end-user, the process of making an online purchase

may look like the following:

1. Go to website

2. Navigate through the website until you
find the pricing page

3. Add desired item(s) to your cart

4. Click “check-out”

5. Proceed to payment page

6. Insert user credentials, payment information,
and address for shipping and billing

7. Click “submit”

8. Finalize purchase

Depending on the product you’re purchasing, the

vendor may need to send essential follow up infor-

mation. These steps could look like the following:

1. User receives thank you email from vendor

2. User receives follow up email with the
product to download

3. User receives a “Getting Started Guide”

The end-to-end tests that would be run in this example,

starting with the website loading to ensuring the

PDF of the guide downloads, define the process of

horizontal end-to-end testing. The tests follow the

consumer through their journey to make sure each

step works flawlessly. You may not realize it initially,

but there are a handful of vertical processes within

each of these steps – the back-end processes

needed to ensure various pieces and user actions

such as the payment pages, inserting user creden-

tials, and sending follow up emails all activate when

prompted. Let’s dig a little deeper.

Take a look at the “Vertical vs. Horizontal” diagram

below. For each point in the journey along the hor-

izontal axis, ‘search & find,’ ‘order,’ and ‘purchase,’

there is a duplicate vertical stack of systems above

and below. For example, the ‘search & find’ step

has database components connected to it. When

you search for products on Amazon, the back-end

systems trigger all sorts of APIs that will scour the

site to pull previous behavioral data in order to pro-

vide suggestions of other products for you to buy.

As you move along the horizontal line, the vertical

stack moves with you and the back-end systems

continue to fire to track your actions. This is how

the site builds a profile on your purchasing habits.

How to Perform
End-to-End Testing

The Complete Guide to End-to-End Testing | 8

There are at least three sub systems that are

triggered by one purchase – product delivery,

marketing, and operations. To provide a seamless

user experience, it’s vital that this entire chain of

processes is tested. That is how you will be suc-

cessful with end to end testing.

However, when building your end-to-end strate-

gy, you may ask yourself, “do I really need to test

every single layer for every step?” The answer is

no. Certain sub systems may be less important to

different user actions. However, your end-to-end

strategy is highly dependent on your application

and your user journey.

In our ecommerce example, we may not be as

concerned about testing the database systems

post-purchase. Ensuring the operations and

marketing systems that are designed to deliver the

product and vital onboarding information work

properly may be more critical.

So which is better – horizontal or vertical end-to-

end testing? To build a robust and successful strat-

egy you need both. The end goal is to provide the

user with a bug-free experience and in this case, it

all starts with ensuring your webpage doesn’t 404.

Horizontal & Vertical End-to-End Testing Example

Search & Find Order Purchase

UI

DataBase

Verify

Checkout

Horizontal Vertical

The Complete Guide to End-to-End Testing | 8

The Complete Guide to End-to-End Testing | 9

Now that we’ve had the chance to walk through

why end-to-end testing is important, the various

types needed to build a robust strategy, and how

to conduct the tests, let’s take it a step further.

What is the approach you should take to imple-

ment end-to-end testing?

Before diving into the ‘top-down’ approach, let’s

quickly review what the ‘bottoms-up’ approach en-

tails and why we recommend a ‘top-down’ approach.

The ‘bottoms-up’ approach to end-to-end testing

typically involves teams stitching together al-

ready-existing tests: API tests, UI tests, databases,

and unit tests from developers. While the approach

works and can be assembled quickly, you lose focus

on the end user experience. When piecing together

tests like a puzzle in this manner, you’re essentially

looking at the success of your end-to-end strategy

as the sum of your functional tests.

The most successful end-to-end tests are built

by starting with defining the experience you want

your end users to have and what the workflows

will look like based off these experiences. You can

then break the workflow down and determine

from there, whether or not you have existing tests

that address each stage of the user journey and if

not, that’s what you need to build next.

These are the three key steps in implementing a
top-down approach:

1. Define workflows from the user perspective

2. Decompose the workflows

3. Decide what you can do

With the top down approach, there are two vital

SLDC pieces you’ll need: well defined requirements

and a solid framework.

Well Defined Requirements:

Well-defined requirements are rare. While good

user stories can drive these, most teams aren’t that

lucky. In today’s fast- paced environment, it can

be a toss-up between spending time flushing out

requirements and getting started. In many cases,

user stories and requirements tend to focus on the

functionality of pieces along the journey, and not

define the workflow from start to finish. Having the

user experience in mind when defining the require-

ments forces you to approach the problem.

Testing Frameworks:

Testing Frameworks are essential to the success of

your end-to-end strategy. They can reduce mainte-
nance costs and improve team efficiency by facilitating

How To Be
Successful: Your
Top-Down Strategy

The Complete Guide to End-to-End Testing | 10

8 Steps for Success

1. Review the requirements you’ll be using. Any good testing process
requires that teams have a basic understanding of the requirements.

2. Set up test environments. Having an idea, or making educated
assumptions as to where your end users will be using your application, is
the first step in ensuring complete test coverage.

3. Define the processes of your system and your sub systems.

4. Describe the roles and responsibilities for each system.

5. Outline the testing methodologies you plan on using. Ask yourself,
what types of testing are you going to be doing - manual, automation,
exploratory? What test cases should you be automating?

6. Standardize testing processes. You’ll optimize your team’s efficiency
if everyone is aligned on what languages to script in, how to handle
data, and what processes are in place.

7. Create requirements for tracking. We’ll dig into this next, but it’s
essential that you have metrics tied to your requirements so you can
gauge how successful your efforts are.

8. List input and output data for each system.

the reusability of code, standardizing processes,

and maximizing test coverage. Building one starts

with your user stories.

Once you’ve defined your requirements, you can

decompose your workflows and start making key

decisions, such as what tests should be automat-

ed, which tests should remain manual, and what

environments your tests need to be run in. Having

reusable code or test components will enable you

to build quickly. You will otherwise constantly be

rebuilding and redefining. You also need to be able

to build the workflows in the same environments

you have your tests set up in.

While having a robust testing framework and

well-defined requirements are vital to ensuring your

end-to-end tests are successful, there are eight

other steps you should take to optimize your time.

Metrics for Success

As with any testing process, you’ll want to know

your time and efforts haven’t been wasted on run-

ning end-to-end tests. The best way to do this is by

tracking your progress with metrics. There is a vast

array of numbers you can use to track progress and

measure success, but there are four key metrics

you should keep in mind to specifically gauge your

end-to-end testing efforts.

The Complete Guide to End-to-End Testing | 11

Test Case Preparation

This number, usually a percentage, is tracking

the number of test cases that are being prepped

against the number that you’ve planned.

Test Progress

This number measures how many tests you’ve com-

pleted against the total number planned, as well as

whether or not they’ve passed or failed.

Defect Status

This number is often the percentage of defects that

were opened and closed in a given time frame, as

well as the severity and priority of each. Good end

to end testing should enable you to fix defects fast-

er, and you would ideally notice that here.

Test Environment Availability

This metric tracks the amount of time you think

you’ll need to run tests in a specific environment,

how much time is actually needed for that envi-

ronment, and how many total environments you

need to run your tests in. You’ll want to track this in

measurements of hours or days.

The Complete Guide to End-to-End Testing | 11

The Complete Guide to End-to-End Testing | 12

Top 3 Most
Common Mistakes
in End-to-End
Testing

After learning which steps you can take to be successful, that last piece of the

puzzle is understanding what not to do. Avoiding these top 3 common mistakes

in end-to-end testing will solidify your strategy and ensure you’re getting the

largest return on invest (ROI) for your efforts.

1 | Not including Environments

It can be easy to lose focus on the end user and not think of the context your

application is being used in. This will result in poor test coverage and inevitably,

bugs in production.

2 | Focusing only on functionality

A user experience is built on a combination of functionality, performance, and

ease- of-use. While testing each feature to ensure the button is in the correct lo-

cation on the UI, or that the API is calling the right information, ensuring that these

fit together from the user perspective is vital. Good end-to-end testing should be

focused on experience.

3 | Executing end-to-end tests prior to functional tests

Think of this as driving a car. You don’t test the system while you’re driving it

down the road. You can’t independently check the functionality of your app

while it’s in use, so it’s important to do this before systems or integration testing.

Feature bugs will be fixed faster when you’re focused on finding them and

when there are less variables at play.

The Complete Guide to End-to-End Testing | 13

Conclusion
Conducting end-to-end testing is critical to reducing business
risks and essential to the success of your product. By taking a
user-centric approach to testing software, you’ll cover different
scenarios and environments, effectively expanding test cover-
age. Finding bugs earlier in the process will also reduce testing
cycles and minimize the costs associated with constant mainte-
nance and upkeep.

End-to-end testing will validate your application is functional
at every level, from the API to the UI layer, and ensure that the
workflow between each piece works flawlessly. You’ll feel confi-
dent your next release is bug- free and production-ready.

The Complete Guide to End-to-End Testing | 14

Functional Test Automation
for Desktop, Mobile and Web

Get Started

Web-based, Mobile
and Desktop Browser Testing

Get Started

Native Jira & Real-time
Test Management

Get Started

API Automated Funtional &
Security Testing

Get Started

https://smartbear.com/product/testcomplete/free-trial/?utm_medium=resource&utm_source=ebook&utm_campaign=end-to-end-testing
https://crossbrowsertesting.com/freetrial?utm_medium=resource&utm_source=ebook&utm_campaign=end-to-end-testing
https://www.getzephyr.com?utm_medium=resource&utm_source=ebook&utm_campaign=end-to-end-testing
https://smartbear.com/product/ready-api/soapui/overview/?utm_medium=resource&utm_source=ebook&utm_campaign=end-to-end-testing

The Complete Guide to End-to-End Testing | 15

https://smartbear.com?utm_medium=resource&utm_source=ebook&utm_campaign=end-to-end-testing

